540 research outputs found

    Fatigue failure analysis of vibrating screen spring by means of finite element simulation: a case study

    Get PDF
    Vibrating screens are often used in the mining industry to separate mineral particles by size. In many designs, spring arrays are used to provide the system with the necessary stiffness for screens to vibrate in a controlled manner. Naturally, these springs are subjected to varying loading cycles, which can cause their premature fatigue failure. This behavior has been studied by means of finite element analysis and compared with data obtained from a real case scenario, in which a helical spring failed. The 3D computational model was developed using the geometric characteristics and material properties of a fractured spring, as well as the loading characteristics of a specific vibrating screen. The meshing and the simulation tasks were performed in the general purpose software ANSYS Mechanical. Given the nature of the helical springs and the high-cycle loading conditions, for the fatigue analysis it was determined that a stress-life approach with constant amplitude and non-proportional loading best fit the investigated phenomenon. In solving the nonproportional loading case, stress values of two static scenarios were required to determine the upper and lower limits. Then, to perform the fatigue calculations a solution combination was used. In addition, in order to correct the effect of mean stress and calculate the stresses component respectively the Goodman and Von Mises theories were employed. Simulation results showed that spring would present failure below the second turn of the coil when working with the full nominal load during nearly forty million cycles. These results strongly agreed with the data extracted from a vibrating screen where fractured spring had been working. Fatigue analysis also predicted that the nominal load should be reduced to 90% in order for the spring to meet the minimum life requirements before failure occur

    The importance of online exposure when applying for a job

    Get PDF
    The rapid growth and development of information and communication technologies enabled the transition to a global and dynamic communication model. Among the many communication tools that have emerged, online social networks have proven to be the most popular. Its success has to do with the ability to converge several features into a single space, allowing users to share knowledge and experiences, maintain contact with their peers, as well as communicate freely and spontaneously. However, using these virtual platforms we are, inevitably, creating an online history that can affect our personal and professional lives. Facing a difficult and competitive job market, companies seek to capture the best talents, within their list of job candidates. In this context, companies are starting to screen online profiles to validate candidates’ personal characteristics in a non-professional environment. The main purpose of this study is to understand the importance of the activities in online social networks when applying for a job, especially among recent graduates, who are seeking their first professional experience. Results show that even though recent graduates take caution when using social networking sites, especially Facebook, online exposure is not considered an important factor when undergoing employment processes.info:eu-repo/semantics/publishedVersio

    The importance of online exposure when applying for a job

    Get PDF
    The rapid growth and development of information and communication technologies enabled the transition to a global and dynamic communication model. Among the many communication tools that have emerged, online social networks have proven to be the most popular. Its success has to do with the ability to converge several features into a single space, allowing users to share knowledge and experiences, maintain contact with their peers, as well as communicate freely and spontaneously. However, using these virtual platforms we are, inevitably, creating an online history that can affect our personal and professional lives. Facing a difficult and competitive job market, companies seek to capture the best talents, within their list of job candidates. In this context, companies are starting to screen online profiles to validate candidates’ personal characteristics in a non-professional environment. The main purpose of this study is to understand the importance of the activities in online social networks when applying for a job, especially among recent graduates, who are seeking their first professional experience. Results show that even though recent graduates take caution when using social networking sites, especially Facebook, online exposure is not considered an important factor when undergoing employment processes.info:eu-repo/semantics/publishedVersio

    Biología reproductiva del Chimango (<i>Polyborus chimango</i>)

    Get PDF
    En este trabajo se ha estudiado la biología reproductiva del chimango en las provincias de Córdoba y Buenos Aires. En ambos sitios fueron observados grupos de nidos, y una colonia de nidificación (56 nidos en 0,7 ha) fue observada en Córdoba. Como hubo una buena cantidad de árboles apropiados, la disponibilidad de lugar para los nidos no puede explicar la nidificación en grupos; la abundancia de alimento es un factor más probable. El tamaño medio de la postura fue de 2.77 huevos, el período de incubación de 26 a 27 días, y el tiempo de permanencia del pichón en el nido 32 a 34 días. El alimento traído a los pichones incluye insectos ortópteros, anfibios y pequeños mamíferos. Aceptado el 14 de abril de 1986.Reproductive biology of the Chimango Caracara (<i>Polyborus chimango</i>). The reproductive biology of the Chimango Caracara (<i>Polyborus chimango</i> ) was studied in the provinces of Córdoba and Buenos Aires. Champed nesting was observed at both sites, and a dense colony (56 nests in 0.7 ha) was observed in Córdoba. Nest sites at both areas were almost exclusively arboreal. As there were plenty of suitable trees, nest site avaiability cannot explain clumped nesting; abundance of food is a more likely factor. Mean clutch size was 2.77 eggs, the incubation period 26 to 27 days, and the nestling period 32 - 34 days. Food brought to nestlings include orthopteroid insects, amphibians and small mammals

    Effect of nitrogen gas in the agglomeration and photoluminescence of Zn-ZnO nanowires after high-temperature annealing

    Get PDF
    The effect of anti-agglomeration and enhanced photoluminescence after high-temperature annealing of Zn-ZnO nanowires in nitrogen at-mosphere is reported. The Zn-ZnO nanowires were deposited by the hot filament chemical vapor deposition technique and subsequentlyannealed at 1100±C in oxygen or nitrogen atmospheres. It was found that under both annealing atmospheres, the structure of the nanowireswas completely oxidized. Morphological studies suggest that annealing under oxygen-rich atmosphere, grain growth occurs, resulting in acontinuous surface with a micrograin-shaped structure. However, it seems that nitrogen-rich annealing partially prevents complete agglom-eration and longitudinal structures composed by nanometric grains were observed. Although photoluminescence properties of the annealednanowires are improved in both annealing atmospheres, it was observed that the PL spectrum of nanowires annealed in nitrogen showed astronger UV emission than that of the oxygen annealed nanowires

    Realization of three-dimensional walking of a cheetah-modeled bio-inspired quadruped robot

    Get PDF
    Adaptability of quadruped animals is not solely reached by brain control, but by the interaction between its body, environment, and control. Especially, morphology of the body is supposed to contribute largely to the adaptability. We have tried to understand quadrupedal locomotion by building a bio-inspired quadruped robot named ”Pneupard”, which has a feline-like muscular-skeletal structure. In our previous study, we successfully realized alternative gait of hindlimbs by reflex control based on the sole touch information, which is called an unloading rule, and that of forelimbs as well. In this paper, we finally connect forelimbs and hindlimbs by a rigid spine, and conduct 3D walking experiments only with the simple unloading rule. Through several preliminary experiments, we realize that the touch information on the sole is the most critical for stable 3D walking.This work was partially supported by Grant-in-Aid for Scientific Research on 23220004, 25540117 of Japan.This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1109/ROBIO.2014.7090426
    corecore